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Themes

Many research areas for exascale computing:

• Algorithms with lower arithmetic complexity, lower communication
complexity

Multilevel algorithms
• Multigrid
• Fast Multipole Method (FMM)
• Hierarchical matrices – algebraic generalization of FMM, (hopefully)

applicable to broader classes of problems

• Parallel algorithms and codes for machines with million-way
parallelism, hierarchical organization

• Distributed memory
• Manycore nodes: 100s of lightweight cores, accelerators, co-processors
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Reduce complexity with hierarchical matrix algorithms



Exploit STRUCTURES

1 Sparsity structure: defined by {0,1} structure (Graphs).
LU factorizaion ∼ O(N2) flops, for many 3D discretized PDEs
(loosely speaking).

Software:
• SPARSPAK (1981, George and Liu)
• YSMP (1982, Eisenstat)
• MA27 multifrontal (1983, Duff and Reid, MA37, MA38, MA47, MA57

etc. in HSL)
• MUMPS, PaStiX, SuperLU, UMFPACK, WSMP, ...
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Exploit STRUCTURES – low rankness

2 On top of (1), can find Data-sparse structure in dense (sub)matrices
(approximation)
O(N) or O(N polylog(N)) flops for compression, factorization.

Hierarchical matrices: H- & H2-matrix (1999, Hackbusch et al.) and
their subclasses.

[Bebendorf, Bini, Börm, Chandrasekaran, Darve, Dewilde, Grasedyck,
Gu, Le Borne, Martinsson, Tygert, Van Barel, van der Veen, Vandebril,
Xia, ...]

Software:
• HLib (2004, Börm and Grasedyck)
• HLIBPro (2004, Kriemann)
• HODLR (2013, Ambikasaran and Darve)
• MUMPS (2015, Amestoy et al.)
• STRUMPACK (2015, LBNL)
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Hierarchical matrix approximation

• Same mathematical foundation as FMM (Greengard and Rokhlin),
put in matrix form:

• Diagonal block (“near field”) represented exactly
• Off-diagonal block (“far field”) approximated via low-rank format

FMM Algebraic
separability of Green’s function low rank off-diagonal

G (x , y) ≈
∑r

`=1 f`(x)g`(y) A =

[
D1 U1B1V

T
2

U2B2V
T
1 D2

]
x ∈ X , y ∈ Y

• Algebraic power: matrix multiplication, factorization, inversion,
tensors, ...



Multilevel is the key to optimal complexity

Two hierarchies:

• Hierarchical partitioning using cluster tree

• Hierarchical, nested bases



1. Cluster tree, block cluster tree

Cluster tree TI defines hierarchical partitioning of the index set [1, n].

• Each node is associated with an interval Iτ .

• For children ν1 and ν2, parent Iτ = Iν1 ∪ Iν2 , and Iν1 ∩ Iν2 = ∅
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Block cluster tree TI×J defines partitioning of the index set I × J , both
row- and column-wise.

• Each node corresp. to a matrix block A(Iτ , Iσ)



2. Nested bases

Example: Hierarchically Semi-Separable matrices (HSS)

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

• Diagonal blocks are full rank: Dτ = A(Iτ , Iτ )

• Off-diagonal blocks as low-rank:

Aν1,ν2 = A(Iν1 , Iν2) = Uν1Bν1,ν2V
∗
ν2

• Column bases U and row bases V ∗ are nested:

Uτ =

[
Uν1 0
0 Uν2

]
Usmall
τ ,Vτ =

[
Vν1 0
0 Vν2

]
V small
τ



HSS matrix – operational view

A(`) = U(`)A(`−1)V (`)T + B(`), levels ` = 1, 2, . . . , L

Data structures built on cluster tree (i.e. HSS tree):

• Keep as an unevaluated product & sum

• Operations going up / down the cluster tree



HSS matrix – ULV factorization

ULV-like factored form (U and V ∗ unitary, L triangular)

Γ1;b↔2;t


I

Ω1
I

Ω2

[Γ3;b↔4;t
Γ5;b↔6;t

]
Ω3

Ω4
Ω5

Ω6

A

Q∗3

Q∗4
Q∗5

Q∗6


[

ΓT3;b↔4;t

ΓT5;b↔6;t

]
I
Q∗1

I
Q∗2

 ΓT1;b↔2;t

=



L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗
1;t B1,2V

∗
2

[
V∗5 Q∗5;t V∗5 Q∗5;b

V∗6 Q∗6;t V∗6 Q∗6;b

] [
I
Q∗2

]
D0

B2,1V
∗
1

[
V∗3 Q∗3;t V∗3 Q∗3;b

V∗4 Q∗4;t V∗4 Q∗4;b

] [
I
Q∗1

]
(Ω2L6,5)b (Ω2L5,6)b W2;bQ

∗
2;t





Families of H and H2 matrices

• Admissibile block (τ, σ): max{diam(τ), diam(σ)} ≤ η dist(τ, σ)

• Strong admissibility: blocks next to diagonal not compressed, only
compress well separated blocks

• H : split a node in a block cluster tree if its block is admissible

• H2 : uniform H partitioning, with nested bases

[Börn/Grasedyck/Hackbusch]
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Various data-sparse formats

Method Hier. part. Nested bases Admissibility Family

HODLR yes no weak H
HSS/HBS yes yes weak H2

Barnes-Hut yes no strong H
FMM yes yes strong H2

BLR no no strong



Various data-sparse formats
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Practical comparisons ... two other talks

• Francois-Henry Rouet, MS39, Thursday, 11:45-12:10
“A Comparison of Different Low-Rank Approximation Techniques”

• Rio Yokota, MS45, Thursday, 3:30-3:55
“Comparison of FMM and HSS at Large Scale”



Low rank compression via randomized sampling

1 Pick random matrix Ωn×(k+p), p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S)

• Accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

• Cost: O(kmn)

N. Halko,P.G. Martinsson, J.A. Tropp, “Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decomposition”, SIAM Review, Vol.53,
pp.217-288, 2011.
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RS vs. “direct” methods (RRQR, truncated SVD)

• When using explicit matrix, all have same asymptotic cost.

• RS can be faster when fast matvec available:
• FMM (O(kn))
• Structured random matrix, e.g. SRFT (Subsampled Random Fourier

Transform) (O(log(k)mn))

• RS useful when only matvec available (matrix-free).

• In sparse solver, RS is more appealing ...



Embedding HSS in multifrontal sparse solver

Approximate frontal matrices with HSS

• Only for top `s levels in the elimination tree,
largest frontal matrices

• ULV factorization of HSS matrix

• Low-rank Schur complement update
HSS
dense



Sparse multifrontal: Extend-Add Fj = Aj l↔ Uc1
l↔ Uc1

Uc1 + Uc2 =

 a1 b1 0
c1 d1 0
0 0 0

+

 a2 0 b2

0 0 0
c2 0 d2

 =

 a1 + a2 b1 b2

c1 d1 0
c2 0 d2



Main obstacle:
extend-add of two HSS structures

Hsolver [Wang/Rouet/Xia/L. 2013]

Compromise:

• keep update matrix as dense

• extend-add dense
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RS simplies frontal extend-add

Skinny extend-merge:



Arithmetic complexities – dense HSS

Let r = HSS rank, i.e., maximum rank found during the different
compression steps.

Compression

• Without RS: O(r N2).

• With RS: cost of sampling + O(r2N)
• Classical matvec: O(r N2).
• FFT (e.g., Toeplitz matrix): O(r N logN).
• FMM: O(r N).

ULV factorization and solve: O(r N)
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Arithmetic complexities – sparse solver w/ HSS embedding

Rank patterns for discretized PDEs on kd mesh: [Chandrasekaran et al.’10,

Enquist/Ying’11, Enquist/Zhao ’14]

2D 3D

Poisson O(1) O(k)
Helmholtz O(log k) or O(k) O(k)

Solver complexities:

3D Helmholtz cost: [Xia ’13] (seems true for many PDEs)

Mem Flops

MF-HSS O(N logN) O(N4/3 logN)

MF-HSS + RS O(N) O(N logN)



Distributed-memory parallel algorithm

Use HSS tree to help data distribution



Multilevel parallelism in sparse MF-HSS solver

Elimination tree, HSS tree, BLAS tree

Node of etree

Node of HSS tree

Node of dense kernels tree

1



Dense – communication analysis

Number of messages and volume of communication on the critical path
(for 1 process):

Algorithm Messages Words

ScaLAPACK LU O(n log p) O
(
n2 log p√

p

)
Randomized O(p log p + r log p + r log2 p) O

(
n2

p + rn√
p + r2

)
HSS compression Redist Sampling Tree Redist Sampling Tree

• Further reduce communication? Lower bound?



STRUMPACK – STRUctured Matrices PACKage
http://portal.nersc.gov/project/sparse/strumpack/

• C++, OpenMP, MPI

• Support both real & complex datatypes, single & double precision
(via template), and 64-bit indexing.

• Input interfaces:
• Dense matrix in standard format.
• Matrix-free
• Sparse matrix in CSR format.

• Can take user input: cluster tree & block partition

• Functions:
• HSS construction, HSS-vector product, ULV factorization, Solution.

• Public domain, BSD license.

• Extensible to include other data-sparse formats.

http://portal.nersc.gov/project/sparse/strumpack/
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Making software robust

• Adaptive sampling machinery
• Automatic handling unknown rank patterns: incrementally adjust

sample size at any node when rank revealed is too large.

• Non-uniform clustering & partitioning

(a) Matrix structure.
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• Adaptive sampling machinery
• Automatic handling unknown rank patterns: incrementally adjust

sample size at any node when rank revealed is too large.

• Non-uniform clustering & partitioning

(c) Matrix structure.
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Matrix-free interface

• Toeplitz: matvec via FFT

Quantum chemistry: ai ,i = π2

6 , ai ,j = (−1)i−j

(i−j)2d2

• Previous best Toeplitz linear solver (e.g. Levinson): O(n2)

16000 32000 64000 128000 256000 370000
n

10−1

100

101

102

103

104

105

Ti
m

e
(s

)

Quantum Chemistry Toeplitz matrix, 64 MPI, compression+factorization+solve

HSS-FFT

n log2 n

HSS-GEMM
n2

LU
n3



Parallel weak scaling

Root node of the multifrontal factorization of a discretized Helmholtz
problem (frequency domain, PML boundary, 10Hz).

k (3D mesh: k3) 100 200 300 400 500
Matrix size (=k2) 10,000 40,000 90,000 160,000 250,000
# Cores 64 256 1,024 4,096 8,192

Maximum rank 313 638 903 1289 1625
Compression time 2.0 13.0 30.6 60.8 133.6

Speed-up over ScaLAPACK 1.8 4.0 5.4 4.8 3.9
Flops ratio 0.6 18.8 132.7 626.1 1716.7

Load imbalance
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Parallel performance of sparse MF-HSS solvers

Cray XC30, Edison at NERSC
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Pardiso (12 threads), MF/MF+HSS with 12 OpenMP threads and MF/MF+HSS with 12 MPI processes

reorder time
factor time
solve time

torso3Serenanlpkkt80atmosmodd

• Compared to PARDISO in Intel MKL library (12 threads)

• OpenMP (12 threads): MF, MF-HSS

• MPI (12 tasks): MF, MF-HSS



Further details ...

• Pieter Ghysels, MS51, Friday, 11:45-12:10
“A Parallel Multifrontal Solver and Preconditioner Using
Hierarchically Semiseparable Structured Matrices”



New parallel algorithms tracking architecture advances



Evolution of parallel machines, programming

• Vector machines, program with vectorization directives

• Shared memory UMA, program with directives or explicit threading

• Distributed memory machines presented major challenges
• Data distribution, locality
• Program with explicit messages, e.g., MPI

• Recently, heterogeneous node architectures, more disruptive
• NUMA, socket / core / vector unit; accelerator / co-processor (e.g.,

GPU)
• Memory per core is small
• Program with mixed MPI & threads & CUDA ...

Mixing task parallelism and data parallelism.
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Variety of node architectures

Titan at ORNL:
16-core AMD + K20X GPU

Programming:

• Separate CPU/GPU programs

• Transfer data between them

Intel Xeon Phi KNL (2016)

• 72 cores

• 4 threads/core

• 2 512bit vector units/core
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SuperLU DIST
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

A widely used open-source sparse direct solver library [LBNL/UC Berkeley]
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Schur-Complement Matrix

Non-zeros
 Blocks

Algorithms

• Right looking

• Static pivoting

• 2D Cyclic data distribution

Two Major computational phases

1 Panel Factorization

2 Schur-Complement Update

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/


Schur-complement udate

• Over 80% factorization time, ample parallelism

• Two operations: GEMM, Gather/Scatter

L:,k

}

L:,k V

Uk,:
~

V L:,kUk,:
~

GEMM-Phase Scatter-Phase

Uk,:}



Design questions for accelerator / co-processor

• Only use accelerator, or use CPU as well?
Accelerator memory small
→ best to use both (offload some computations to GPU)

• What to offload?
Panel factorization not suitable for fine-grained data-parallel model
→ offload only Schur complement update

• Schur complement update: GEMM, and Gather/Scatter?
• GEMM only compute intensive [Sao/Vuduc/L. 2014]
• Both GEMM and Gather/Scatter indirect addressing, memory

intensive [Sao/Liu/Vuduc/L. 2015]

Overlap activities on both CPU/GPU to hide transfer latency over PCIe
bus (10-15 microseconds)
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Overlap activities on both CPU/GPU to hide transfer latency over PCIe
bus (10-15 microseconds)



HALO algorithm – Highly Asynchronous Lazy Offload

• Maintain two partial sums of Schur-complement on both CPU and
GPU, selectively offload Schur updates

• Aφ has the same sparsity structure as A (2x memory duplicate)
• Part of Schur update on CPU, part on GPU

• Reduce to-be-factorized panel on CPU, absorbing GPU’s panel.
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2-3x performance gains on 1000+ nodes GPU cluster Titan at ORNL
2-5x reduction in memory footprint
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Further details ...

• Piyush Sao, MS48, Thursday, 4:00-4:25
“A Sparse Direct Solver for Distributed Memory GPU and Xeon Phi
Accelerated Systems”

Other sparse factorization GPU work:

• PARDISO: left-looking sparse LU, offload BLAS
[Schenk/Christen/Burkhart, 2008]

• WSMP: multifrontal sparse Cholesky, offload BLAS [George et al.,

2011]

• Multifrontal sparse Cholesky, offload frontal matrix computation
[Krawezik and Poole 2009, Vuduc et al. 2011, Yu/Wang/Pierce 2011]

• Threading, offload large frontal matrix computation [Lucas et al., 2010]

• Sparse multifrontal QR: offload subtrees of the assembly tree
[Yeralan/Davis/Ranka, 2013]
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Summary

• Sparse matrices can be made sparser by combining structural sparsity
with data sparsity.

• Good ordering and hierarchical clustering / partitioning
• Alternative rank-revealing procedures
• Dynamic load balancing

• Need redesign known algorithms, refactor existing codes for new
architectures.
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